Cloning, sequence, and transcriptional regulation of the operon encoding a putative N-acetylmannosamine-6-phosphate epimerase (nanE) and sialic acid lyase (nanA) in Clostridium perfringens.
نویسندگان
چکیده
Clostridium perfringens can obtain sialic acid from host tissues by the activity of sialidase enzymes on sialoglycoconjugates. After sialic acid is transported into the cell, sialic acid lyase (NanA) then catalyzes the hydrolysis of sialic acid into pyruvate and N-acetylmannosamine. The latter is converted for use as a biosynthetic intermediate or carbohydrate source in a pathway including an epimerase (NanE) that converts N-acetylmannosamine-6-phosphate to N-acetylglucosamine-6-phosphate. A 4.0-kb DNA fragment from C. perfringens NCTC 8798 that contains the nanE and nanA genes has been cloned. The identification of the nanA gene product as sialic acid lyase was confirmed by overexpressing the gene and measuring sialic acid lyase activity in a nanA Escherichia coli strain, EV78. The nanA gene product was also shown to restore growth to EV78 in minimal medium with sialic acid as the sole carbon source. By using Northern blot experiments, it was demonstrated that the nanE and nanA genes comprise an operon and that transcription of the operon in C. perfringens is inducible by the addition of sialic acid to the growth medium. The Northern blot experiments also showed that there is no catabolite repression of nanE-nanA transcription by glucose. With a plasmid construct containing a promoterless cpe-gusA gene fusion, in which beta-glucuronidase activity indicated that the gusA gene acted as a reporter for transcription, a promoter was localized to the region upstream of the nanE gene. Primer extension experiments then allowed us to identify a sialic acid-inducible promoter located 30 bp upstream of the nanE coding sequence.
منابع مشابه
NanR, a Transcriptional Regulator That Binds to the Promoters of Genes Involved in Sialic Acid Metabolism in the Anaerobic Pathogen Clostridium perfringens
Among many other virulence factors, Clostridium perfringens produces three sialidases NanH, NanI and NanJ. NanH lacks a secretion signal peptide and is predicted to be an intracellular enzyme, while NanI and NanJ are secreted. Previously, we had identified part of an operon encoding NanE (epimerase) and NanA (sialic acid lyase) enzymes. Further analysis of the entire operon suggests that it enc...
متن کاملConvergent pathways for utilization of the amino sugars N-acetylglucosamine, N-acetylmannosamine, and N-acetylneuraminic acid by Escherichia coli.
N-Acetylglucosamine (GlcNAc) and N-acetylneuraminic acid (NANA) are good carbon sources for Escherichia coli K-12, whereas N-acetylmannosamine (ManNAc) is metabolized very slowly. The isolation of regulatory mutations which enhanced utilization of ManNAc allowed us to elucidate the pathway of its degradation. ManNAc is transported by the manXYZ-encoded phosphoenolpyruvate-dependent phosphotrans...
متن کاملSialic acid catabolism in Staphylococcus aureus.
Staphylococcus aureus is a ubiquitous bacterial pathogen that is the causative agent of numerous acute and chronic infections. S. aureus colonizes the anterior nares of a significant portion of the healthy adult population, but the mechanisms of colonization remain incompletely defined. Sialic acid (N-acetylneuraminic acid [Neu5Ac]) is a bioavailable carbon and nitrogen source that is abundant ...
متن کاملDiversifying and stabilizing selection of sialidase and N-acetylneuraminate catabolism in Mycoplasma synoviae.
Sialidase activity varies widely among strains and tends to correlate with strain virulence in the avian pathogen Mycoplasma synoviae. To characterize the forms of selection acting on enzymes required for sialic acid scavenging and catabolism, the ratios of nonsynonymous (K(a)) to synonymous (K(s)) mutation frequency were calculated for codons in the sialidase gene of 16 strains of M. synoviae ...
متن کاملExpression of a functional Drosophila melanogaster N-acetylneuraminic acid (Neu5Ac) phosphate synthase gene: evidence for endogenous sialic acid biosynthetic ability in insects.
In this study, we report the first cloning and characterization of a N-acetylneuraminic acid phosphate synthase gene from Drosophila melanogaster, an insect in the protostome lineage. The gene is ubiquitously expressed at all stages of Drosophila development and in Schneider cells. Similar to the human homologue, the gene encodes an enzyme with dual substrate specificity that can use either N-a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 181 15 شماره
صفحات -
تاریخ انتشار 1999